
ReactiveX: The observer pattern done right

STEFAN GLIENKE



About me

◦ Experience in Turbo Pascal and Delphi since 1997

◦ Education as software developer

◦ Participation in several open source projects

◦ Embarcadero MVP since 2014 and „MVP of the year“ 2015

◦ Specialized in following areas
◦ Development of logic and data layers

◦ Software design and architecture

◦ „Clean code“

◦ Lead developer of Spring4D



Agenda

What is ReactiveX?

◦ Observable

◦ Pull vs Push

◦ Operators

◦ Schedulers

First look at Spring.Reactive



What is ReactiveX?

Reactive Extensions

Reactor Pattern

a combination of the best ideas from 
◦ the Observer pattern, 

◦ the Iterator pattern, 

◦ and functional programming

Polyglot implementation



What’s the observer pattern again?



Iterator + Observable

Single items Multiple items

synchronous T getData() IEnumerable<T> GetData()

asynchronous IFuture<T> getData() IObservable<T> GetData()



Iterator <-> Observable

event Enumerable (pull) Observable (push)

Retrieve data MoveNext + GetCurrent onNext(T)

Discover error Raises exception onError(Exception)

Complete MoveNext returned False onCompleted()



Iterator <-> Observable

Enumerable Observable

for x in getDataFromNetwork do
Process(x);

getDataFromNetwork
.Subscribe(Process);



The contracts



Observable



Why use Observable?

Composable

Flexible

Less opinionated



Operators
Creating

◦ Create, Defer, Empty/Never/Throw, From, Interval, Just, Range, Repeat, Start, Timer

Transforming:
◦ Buffer, FlatMap, GroupBy, Map, Scan, Window

Filtering:
◦ Debounce, Distinct, ElementAt, Filter, First, IgnoreElements, Last, Sample, Skip, SkipLast, Take, TakeLast

Combining:
◦ And/Then/When, CombineLatest, Join, Merge, StartWith, Switch, Zip



Buffer



GroupBy



Window



Schedulers

RX is a free-threaded model

Schedulers are controlling where work is being done

Control over where subscribers are doing their work



IObservable<T> and IObserver<T>

IObservable<T> = interface
function Subscribe(const observer: IObserver<T>): IDisposable;

end;

IObserver<T> = interface
procedure OnNext(const value: T);
procedure OnError(const error: Exception);
procedure OnCompleted;

end;



Let‘s look at some code!



Delphi implementation difficulties

All operators need to be implemented on the IObservable<T> interface or via static methods
◦ for better support we need interface helpers (aka extension methods)

◦ Please vote!
◦ https://quality.embarcadero.com/browse/RSP-10336 (generic type helpers)

◦ https://quality.embarcadero.com/browse/RSP-16763 (interface helpers)

Lifetime management of objects being processed through observables need to be considered
◦ ARC vs no ARC

ARC on interfaces is working slightly different than in GC languages
◦ Easy to cause circular references especially when using nested observables and anonymous methods

https://quality.embarcadero.com/browse/RSP-10336
https://quality.embarcadero.com/browse/RSP-16763


Future plans for Spring.Reactive

Support for all canonical operators of Reactive including extensive unit tests

Implementation of various schedulers for different situations

Pushing the Delphi language evolution ;)



I want to know more about ReactiveX!

ReactiveX page:
◦ http://reactivex.io

Introduction to Rx (mostly the C# implementation):
◦ http://www.introtorx.com

Video series done by Microsoft developers:
◦ https://channel9.msdn.com/Series/Rx-Workshop/Rx-Workshop-Introduction

Spring4D: Email:
◦ http://spring4d.org sglienke@dsharp.org

http://www.spring4d.org
http://www.introtorx.com/
https://channel9.msdn.com/Series/Rx-Workshop/Rx-Workshop-Introduction
http://spring4d.org/
mailto:sglienke@dsharp.org


Thank you very much for your attention!

Questions?


