ReactiveX: The observer pattern done right

STEFAN GLIENKE

About me

o

Experience in Turbo Pascal and Delphi since 1997

o

Education as software developer

o

Participation in several open source projects

o

Embarcadero MVP since 2014 and ,MVP of the year” 2015

o

Specialized in following areas
> Development of logic and data layers
> Software design and architecture

o ,Clean code”

(e]

Lead developer of Spring4D

Agenda

What is ReactiveX?

o

Observable
Pull vs Push
Operators

o

o

o

Schedulers

First look at Spring.Reactive

What is ReactiveX?

Reactive Extensions
Reactor Pattern

a combination of the best ideas from
> the Observer pattern,
> the Iterator pattern,
> and functional programming

Polyglot implementation

What's the observer pattern again?

<<interface>>
i Observer

<<interface>>
Observable

registerObserver()
removeQbserver()
notifyObservers()

Observablelmplementation

Observerlmplementation

registerObserver(){...}
removeObserver(){...}
notifvObservers(){....}

t— 0 d ate (){...}
//Other methods of observer

lterator + Observable

_ Single items Multiple items

synchronous T getData() IEnumerable<T> GetData()

asynchronous IFuture<T> getData() |Observable<T> GetData()

lterator <-> Observable

_ Enumerable (pull) Observable (push)

Retrieve data MoveNext + GetCurrent onNext(T)

Discover error Raises exception onError(Exception)

Complete MoveNext returned False = onCompleted()

lterator <-> Observable

for x in getDataFromNetwork do getDataFromNetwork
Process(x); .Subscribe(Process);

The contracts

Observable

This is the timeline of the These are items emitted This vertical line indicates
Observable. Time flows by the Observable. that the Observable has

from left to right. // \\\ completed successfully.

' These dotted lines and

é Y Yy v y v +<_\ this box indicate that a

transformation is being
flip applied to the Observable.
/ The text inside the box

shows the nature of the

[] : [] :<__
Yy v . transformation.
SN0 >
This Observable is If for some reason the Observable
the result of the terminates abnormally, with an error, the
transformation. vertical line is replaced by an X.

Why use Observable?

Composable
Flexible

Less opinionated

Operators

Creating
> Create, Defer, Empty/Never/Throw, From, Interval, Just, Range, Repeat, Start, Timer

Transforming:
© Buffer, FlatMap, GroupBy, Map, Scan, Window

Filtering:
> Debounce, Distinct, ElementAt, Filter, First, IgnoreElements, Last, Sample, Skip, SkipLast, Take, Takelast

Combining:
> And/Then/When, Combinelatest, Join, Merge, StartWith, Switch, Zip

Buffer

Window

v

=
Y Y VY v

‘ Window I

PEETEEEE A

v

Schedulers

RX is a free-threaded model
Schedulers are controlling where work is being done

Control over where subscribers are doing their work

|Observable<T> and |Observer<T>

IObservable<T> = interface

function Subscribe(const observer: IObserver<T>): IDisposable;
end;

IObserver<T> = interface
procedure OnNext(const value: T);
procedure OnError(const error: Exception);
procedure OnCompleted;

end;

Let’s look at some code!

Delphi implementation difficulties

All operators need to be implemented on the IObservable<T> interface or via static methods
> for better support we need interface helpers (aka extension methods)

> Please vote!
° https://quality.embarcadero.com/browse/RSP-10336 (generic type helpers)

o https://quality.embarcadero.com/browse/RSP-16763 (interface helpers)

Lifetime management of objects being processed through observables need to be considered
> ARC vs no ARC

ARC on interfaces is working slightly different than in GC languages
> Easy to cause circular references especially when using nested observables and anonymous methods

https://quality.embarcadero.com/browse/RSP-10336
https://quality.embarcadero.com/browse/RSP-16763

Future plans for Spring.Reactive

Support for all canonical operators of Reactive including extensive unit tests
Implementation of various schedulers for different situations

Pushing the Delphi language evolution ;)

| want to know more about ReactiveX!

ReactiveX page:
o http://reactivex.io

Introduction to Rx (mostly the C# implementation):
o http://www.introtorx.com

Video series done by Microsoft developers:
o https://channel9.msdn.com/Series/Rx-Workshop/Rx-Workshop-Introduction

Spring4D: Email:
o http://springdd.org sglienke@dsharp.org

http://www.spring4d.org
http://www.introtorx.com/
https://channel9.msdn.com/Series/Rx-Workshop/Rx-Workshop-Introduction
http://spring4d.org/
mailto:sglienke@dsharp.org

Thank you very much for your attention!

Questions?

