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About me

o

Experience in Turbo Pascal and Delphi since 1997

o

Education as software developer

o

Participation in several open source projects

o

Embarcadero MVP since 2014 and ,MVP of the year” 2015

o

Specialized in following areas
> Development of logic and data layers
> Software design and architecture

o ,Clean code”
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What is ReactiveX?

o

Observable
Pull vs Push
Operators

o

o

o

Schedulers

First look at Spring.Reactive



What is ReactiveX?

Reactive Extensions
Reactor Pattern

a combination of the best ideas from
> the Observer pattern,
> the Iterator pattern,
> and functional programming

Polyglot implementation



What's the observer pattern again?

<<interface>>
i Observer

<<interface>>
Observable

registerObserver()
removeQbserver()
notifyObservers()

Observablelmplementation

Observerlmplementation

registerObserver(){...}
removeObserver(){...}
notifvObservers(){....}

t— 0 d ate (){...}
//Other methods of observer




lterator + Observable

_ Single items Multiple items

synchronous T getData() IEnumerable<T> GetData()

asynchronous IFuture<T> getData() |Observable<T> GetData()




lterator <-> Observable

_ Enumerable (pull) Observable (push)

Retrieve data MoveNext + GetCurrent onNext(T)

Discover error Raises exception onError(Exception)

Complete MoveNext returned False = onCompleted()




lterator <-> Observable

for x in getDataFromNetwork do getDataFromNetwork
Process(x); .Subscribe(Process);




The contracts




Observable
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Why use Observable?

Composable
Flexible

Less opinionated



Operators

Creating
> Create, Defer, Empty/Never/Throw, From, Interval, Just, Range, Repeat, Start, Timer

Transforming:
© Buffer, FlatMap, GroupBy, Map, Scan, Window

Filtering:
> Debounce, Distinct, ElementAt, Filter, First, IgnoreElements, Last, Sample, Skip, SkipLast, Take, Takelast

Combining:
> And/Then/When, Combinelatest, Join, Merge, StartWith, Switch, Zip



Buffer
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Schedulers

RX is a free-threaded model
Schedulers are controlling where work is being done

Control over where subscribers are doing their work



|Observable<T> and |Observer<T>

IObservable<T> = interface

function Subscribe(const observer: IObserver<T>): IDisposable;
end;

IObserver<T> = interface
procedure OnNext(const value: T);
procedure OnError(const error: Exception);
procedure OnCompleted;

end;



Let’s look at some code!




Delphi implementation difficulties

All operators need to be implemented on the IObservable<T> interface or via static methods
> for better support we need interface helpers (aka extension methods)

> Please vote!
° https://quality.embarcadero.com/browse/RSP-10336 (generic type helpers)

o https://quality.embarcadero.com/browse/RSP-16763 (interface helpers)

Lifetime management of objects being processed through observables need to be considered
> ARC vs no ARC

ARC on interfaces is working slightly different than in GC languages
> Easy to cause circular references especially when using nested observables and anonymous methods


https://quality.embarcadero.com/browse/RSP-10336
https://quality.embarcadero.com/browse/RSP-16763

Future plans for Spring.Reactive

Support for all canonical operators of Reactive including extensive unit tests
Implementation of various schedulers for different situations

Pushing the Delphi language evolution ;)



| want to know more about ReactiveX!

ReactiveX page:
o http://reactivex.io

Introduction to Rx (mostly the C# implementation):
o http://www.introtorx.com

Video series done by Microsoft developers:
o https://channel9.msdn.com/Series/Rx-Workshop/Rx-Workshop-Introduction

Spring4D: Email:
o http://springdd.org sglienke@dsharp.org



http://www.spring4d.org
http://www.introtorx.com/
https://channel9.msdn.com/Series/Rx-Workshop/Rx-Workshop-Introduction
http://spring4d.org/
mailto:sglienke@dsharp.org

Thank you very much for your attention!

Questions?




